

EXERCICE 1 4 points

Les autres égalités s'obtiennent de façon semblable.

- 1. M est l'image de A dans la rotation de centre B et d'angle $+\frac{\pi}{3}$ ce qui se traduit par $m-b=\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}(a-b) \iff m=\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}(a-b)+b$.
- 2. En utilisant les relations précédentes :
 - **a.** Par différence des deux premières égalités $m-n=\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}(a-c)$ et par différence des deux dernières : $q-p=\mathrm{e}^{\mathrm{i}\frac{\pi}{3}}(a-c)$. On a donc par transitivité $m-n=q-p\iff \overline{\mathrm{NM}}=\overline{\mathrm{PQ}}\iff \mathrm{NMQP}$ est un parallélogramme.
 - **b.** Dans la rotation de centre D et d'angle $+\frac{\pi}{3}$: $A \longrightarrow Q$ Par propriétés de la rotation (qui est une isométrie), AC = QP et $(\overrightarrow{AC}, \overrightarrow{QP}) = +\frac{\pi}{3}$.

De même dans la rotation de centre C et d'angle $-\frac{\pi}{3}$, on a

$$\begin{array}{ccc} B & \longmapsto & N \\ D & \longmapsto & P \end{array}$$

Donc BD = NP et
$$(\overrightarrow{BD}, \overrightarrow{NP}) = -\frac{\pi}{3} \iff (\overrightarrow{NP}, \overrightarrow{BD}) = \frac{\pi}{3}$$
.

3. On sait déjà que MNPQ est un parallélograme; il faut qu'en plus il ait deux côtés consécutifs de même longueur et perpendiculaires.

Or NP = QP \iff AC = BD d'après la question précédente.

D'autre part
$$(\overrightarrow{NP}, \overrightarrow{QP}) = \frac{\pi}{2} \iff (\overrightarrow{NP}, \overrightarrow{BD}) + (\overrightarrow{BD}, \overrightarrow{AC}) + (\overrightarrow{AC}, \overrightarrow{QP}) = \frac{\pi}{2} \iff (\overrightarrow{BD}, \overrightarrow{AC}) = \frac{\pi}{2} - (\overrightarrow{NP}, \overrightarrow{BD}) - (\overrightarrow{AC}, \overrightarrow{QP}) = \frac{\pi}{2} - \frac{\pi}{3} - \frac{\pi}{3} = \frac{3\pi}{6} - \frac{4\pi}{6} = -\frac{\pi}{6} \iff (\overrightarrow{AC}, \overrightarrow{BD}) = \frac{\pi}{6}$$
, toutes ces égalités étant modulo π .

EXERCICE 2 5 points Partie A

- 1. La somme des coefficients est :
 - $1+1-m+2m-1+1-m=2\neq 0$ quel que soit m. Le barycentre G_m existe donc quel que soit le réel m.
- **2.** On a $G_1 = bar\{(E; 1), (B, 0), (G; 1), (D; 0)\} = bar\{(E; 1), (G; 1)\}$ qui est tout simplement le milieu de [EG].
- 3. On a $G_0 = bar\{(E; 1), (B, 1), (G; -1), (D; 1)\}$. On a donc par définition $1\overrightarrow{G_0E} + 1\overrightarrow{G_0B} 1\overrightarrow{G_0G} + 1\overrightarrow{G_0D} = \overrightarrow{0} \iff 2\overrightarrow{G_0A} + \overrightarrow{AE} + \overrightarrow{AB} \overrightarrow{AG} + \overrightarrow{AD} = \overrightarrow{0}$. Or $\overrightarrow{AE} + \overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AG}$, donc l'égalité précédente devient $2\overrightarrow{G_0A} = \overrightarrow{0} \iff G_0 = A$.

 $G_0 = A$ entraîne que A est le barycentre de $\{(E, 1), (B, 1), (G, -1), (D, 1)\} = bar\{(I, 3), (G, -1)\}$ par associativité des trois points E, B et D.

La dernière relation montre que la barycentre A est aligné avec les points I et G.

4. Par définition du barycentre :

$$\overrightarrow{G_mE} + (1-m)\overrightarrow{G_mB} + (2m-1)\overrightarrow{G_mG} + (1-m)\overrightarrow{G_mD} = \overrightarrow{0}$$
 soit en faisant intervenir le point A grâce à le relation de Chasles
$$\overrightarrow{G_mA} + \overrightarrow{AE} + (1-m)\left(\overrightarrow{G_mA} + \overrightarrow{AB}\right) + (2m-1)\left(\overrightarrow{G_mA} + \overrightarrow{AG}\right) + (1-m)\left(\overrightarrow{G_mA} + \overrightarrow{AD}\right) =$$

soit en développant

$$\underbrace{(1+1-m+2m-1+1-m)\overrightarrow{G_mA}}_{\bigoplus} + \overrightarrow{AE} + (1-m)\overrightarrow{AB} + (2m-1)\overrightarrow{AG} + (1-m)\overrightarrow{AD} = 0$$

$$2\overrightarrow{G_mA} - m\overrightarrow{AB} + 2m\overrightarrow{AG} - m\overrightarrow{AD} = \overrightarrow{0}$$

car dans le pavé : $\overrightarrow{AG} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AE}$

Comme $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$, la relation devient :

$$2\overrightarrow{G_{m}A} - m\overrightarrow{AC} + 2m\overrightarrow{AG} = \overrightarrow{0} \iff$$

$$\overrightarrow{G_{m}A} = \frac{m}{2} \left(\overrightarrow{AC} - 2\overrightarrow{AG} \right)$$

$$\overrightarrow{AC} = \overrightarrow{EG} = 2\overrightarrow{O_2G}$$

$$\frac{\operatorname{donc} \operatorname{on a}}{\operatorname{G}_{m} \overrightarrow{\mathbf{A}}} = \frac{m}{2} \left(2 \overrightarrow{\mathrm{O}_{2} \mathbf{G}} - 2 \overrightarrow{\mathrm{AG}} \right) \Longleftrightarrow \overrightarrow{\mathrm{G}_{m} \mathbf{A}} = \frac{m}{2} \left(2 \overrightarrow{\mathrm{O}_{2} \mathbf{G}} + 2 \overrightarrow{\mathrm{GA}} \right) \Longleftrightarrow \overrightarrow{\mathrm{G}_{m} \mathbf{A}} = \frac{m}{2} \left(2 \overrightarrow{\mathrm{O}_{2} \mathbf{G}} \right) \Longleftrightarrow \overrightarrow{\mathrm{G}_{m} \mathbf{A}} = m \overrightarrow{\mathrm{O}_{2} \mathbf{A}} \Longleftrightarrow \overrightarrow{\mathrm{AG}_{m}} = m \overrightarrow{\mathrm{AO}_{2}}$$

Cette dernière égalité montre que le point G_m appartient à la droite (AO₂) et plus précisement que le point G_m a pour abscisse m si le repère choisi est le couple (A, O₂).

 Υ Ainsi on retrouve que G_0 a pour abscisse 0, donc est égal au point A et que G_1 a pour abscisse 1 et est donc égal au point O_2 .

5. a. O_2 est le milieu de [EG], donc la droite (AO₂) appartient au plan (ACGE); on vient de démontrer que G_m appartient à la droite (AO₂) : donc G_m appartient au plan (ACGE) et enfin O_1 étant le mileu de [AC] appartient lui aussi à ce plan.

Conclusion : les points A, C, E, G, O_1 , O_2 et G_m sont coplanaires.

b. I étant le centre de gravité du triangle EBD, appartient au plan (EBD). De même la droite (EI) appartient à ce plan.

 G_m appartient au plan (EBD) s'il est barycentre des trois points E, B et D. Il faut donc que le coefficient de G (dans la définition de G_m soit nul, donc que $m = \frac{1}{2}$.

On a donc $G_{\frac{1}{2}}$ bar $\{(E, 1), (B, \frac{1}{2}), (D, \frac{1}{2})\}$ soit le barycentre de $\{(E, 1), (I, 1)\}$ c'est-à- dire en fait le milieu de [EI].

Conclusion G_m appartient à (EI) si et seulement si $m = \frac{1}{2}$.

Partie B

1. On a immédiattement :

A(0; 0; 0), B(1; 0; 0), C(1; 1; 0), D(0; 1; 0), E(0; 0; 1), G(1; 1; 1).

$$\overrightarrow{AG}(1; 1; 1), \overrightarrow{EB}(1; 0; -1), \overrightarrow{ED}(0; 1; -1),.$$

Or $\overrightarrow{AG} \cdot \overrightarrow{EB} = 1 - 1 = 0$ et $\overrightarrow{AG} \cdot \overrightarrow{ED} = 1 - 1 = 0$.

Le vecteur \overrightarrow{AG} étant orthogonal à deux vecteurs non colinéaires du plan (EBD) est donc orthogonal à ce plan.

• L'équation du plan (EBD) orthogonal au vecteur $\overrightarrow{AG}(1;1;1)$ et contenant le point B(1;0;0) est :

$$M(x; y; z) \in (EBD) \iff 1 \times (x-1) + 1 \times y - 0 + 1 \times (z-0) = 0 \iff x + y + z - 1 = 0.$$

2. Comme O_2 est le milieu de [EG], $O_2(\frac{1}{2}; \frac{1}{2}; 1)$.

Comme $\overrightarrow{AG_m}(x; y; z)$, ces trois nombres étant les coordonnées du point G_m , l'égalité trouvée à la partie $A : \overrightarrow{AG_m} = \overrightarrow{mAO_2}$ se traduit par :

$$\begin{cases} x = \frac{m}{2} \\ y = \frac{m}{2} \end{cases} . \text{ Donc } G_m\left(\frac{m}{2}; \frac{m}{2}; m\right). \text{ On sait que la distance de } G_m \text{ au plan} \\ z = m \end{cases}$$

est donnée par :

$$\frac{\left|x_{G_m} + y_{G_m} + z_{G_m}\right|}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{\left|\frac{m}{2} + \frac{m}{2} + m - 1\right|}{\sqrt{3}} = \frac{|2m - 1|}{\sqrt{3}}.$$
On a donc $\frac{|2m - 1|}{\sqrt{3}} = \frac{\sqrt{3}}{3} \iff |2m - 1| = 1 \iff \begin{cases} 2m - 1 & = 1 \text{ ou} \\ 2m - 1 & = -1 \end{cases} \iff \begin{cases} m = 1 \text{ ou} \\ m = 0 \end{cases}$

EXERCICE 3 11 points

Partie A: étude d'une fonction

1. **a.** $P(X) = -2\left(X^2 - \frac{X}{2}\right) + 1 = -2\left[X - \frac{1}{4}\right]^2 + \frac{1}{8} + 1 = -2\left[X - \frac{1}{4}\right]^2 + \frac{9}{8} = -2\left[\left(X - \frac{1}{4}\right)^2 - \frac{9}{16}\right] = -2\left(X - \frac{1}{4} + \frac{3}{4}\right)\left(X - \frac{1}{4} - \frac{3}{4}\right) = -2\left(X + \frac{1}{2}\right)(X - 1).$ On sait que P(X) < 0 sauf sur $\left[-\frac{1}{2}; 1\right]$ où $P(X) \ge 0$, avec $P\left(-\frac{1}{2}\right) = P(1) = -\frac{1}{2}$

on sait que F(X) < 0 saut sur $\left[-\frac{1}{2}, 1 \right]$ ou $F(X) \ge 0$, avec $F\left(-\frac{1}{2} \right) - F(1) = 0$. **b.** En posant $X = e^{-x}$, $f(x) = 1 + X - 2X^2 = P(X)$. Le signe de f est celui de

P(X), mais avec X > 0. Donc pour $X \in]0$; $1[, 0 < X < 1 \iff x > 0, \ f(x) > 0, \ f(0) = 0,$

pour $X > 1 \iff x < 0, f(x) < 0$.

c. La courbe \mathscr{C} contient donc l'origine.

2. Comme $\lim_{x \to +\infty} e^{-x} = 0$ et $\lim_{x \to +\infty} e^{-2x} = 0$, $\lim_{x \to +\infty} f(x) = 1$.

Ceci montre que la droite d'équation y = 1 est asymptote horizontale à la courbe $\mathscr C$ au voisinage de plus l'infini.

3. On factorise e^{-2x} dans l'écriture de f(x):

 $f(x) = e^{-2x} (e^{2x} + e^x - 2).$ Comme $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} e^{2x} = 0$, $\lim_{x \to -\infty} e^{2x} + e^x - 2 = -2$.

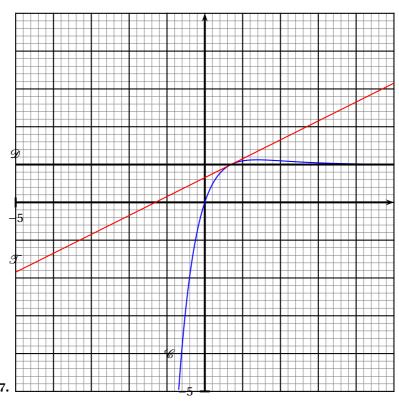
D'autre part $\lim_{x \to -\infty} e^{-2x} = +\infty$ et par produit des limites : $\lim_{x \to -\infty} f(x) = -\infty$

- **4. a.** f étant la somme de fonctions dérivables sur \mathbb{R} , est dérivable sur \mathbb{R} et $f'(x) = -e^{-x} + 4e^{-2x}$.
 - **b.** $f'(x) = -e^{-x} + 4e^{-2x} = e^{-2x} (4 e^x)$ et comme $e^{-2x} > 0$, quel que soit $x \in \mathbb{R}$, le signe de f'(x) est celui de $(4 e^x)$.
 - **c.** On a $(4 e^x) = 0 \iff e^x = 4 \iff x = \ln 4 = 2\ln 2$; $(4 e^x) > 0 \iff e^x < 4 \iff x < 2\ln 2$ par croissance de la fonction ln; $(4 e^x) < 0 \iff e^x > 4 \iff x > 2\ln 2$ par croissance de la fonction ln. On en déduit le tableau de variations :

x	-∞		2ln2	$+\infty$
f'(x)		+	0	_
f(x)	-∞/	1	9 8	1

- **5. a.** Les abscisses des points communs vérifient $1 + e^{-x} 2e^{-2x} = 1 \iff e^{-x} 2e^{-2x} = 0 \iff e^{-2x} (e^x 2) = 0 \iff e^x 2 = 0 \iff e^x = 2 \iff x = \ln 2.$ Donc A(ln 2; 1).
 - **b.** Sur $]-\infty$; $\ln 2[$, f(x) < 1 donc la courbe $\mathscr C$ est sous la droite $\mathscr D$; Sur $]\ln 2$; $+\infty[$, f(x) > 1 donc la courbe $\mathscr C$ est au dessus de la droite $\mathscr D$.
- **6.** Une équation de \mathcal{T} est :

$$M(x; y) \in \mathcal{T} \iff y - y_A = f'(\ln 2)(x - x_A) \iff y = 1 + \frac{1}{2}(x - \ln 2).$$



Partie B : étude d'une suite

1. Cette aire est égale à la différence :

$$\mathcal{A} = \ln 2 \times 1 - \int_0^{\ln 2} f(x) dx = \ln 2 - \int_0^{\ln 2} \left(1 + e^{-x} - 2e^{-2x} \right) dx = \ln 2 - \left[x - e^{-x} + e^{-2x} \right]_0^{\ln 2} = \ln 2 - \ln 2 + e^{\ln 2} - e^{-2\ln 2} + 0 - e^{-0} + e^{-2 \times 0} = \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$

2. a. Quel que soit le naturel n > 0, $n - 1 + \ln 2 \ge \ln 2$ et on a vu que pour $x \ge \ln 2$, $f(x) \ge 1$.

Donc chaque terme est l'intégrale d'une fonction positive sur un intervalle [a;b] tel que a < b: c'est donc un nombre positif.

Nouvelle–Calédonie 4 mars 2004

- **b.** Chaque terme est égal à l'aire de la surface limitée par \mathscr{C} , le droite y = 1 et les droites verticales d'équations $x = (n-1) + \ln 2$ et $y = n + \ln 2$.
- **3. a.** On a vu que pour $x > \ln 2$, la fonction f est décroissante. Donc : $(n-1) + \ln 2 \le x \le n + \ln 2 \Rightarrow f(n+\ln 2) \le f(x) \le f[(n-1) + \ln 2] \iff f(n+\ln 2) 1 \le f(x) 1 \le f[(n-1) + \ln 2] 1.$
 - b. Par intégration des trois fonctions positives sur l'intervalle

$$\begin{split} & [(n-1) + \ln 2 \, ; \, n + \ln 2] \\ & \int_{(n-1) + \ln 2}^{n + \ln 2} [f(n + \ln 2) - 1] \, \mathrm{d}x \leq \int_{(n-1) + \ln 2}^{n + \ln 2} f(x) \, \mathrm{d}x \leq \\ & \int_{(n-1) + \ln 2}^{n + \ln 2} \left(f[(n-1) + \ln 2] - 1 \right) \, \mathrm{d}x \iff \\ & f(n + \ln 2) - 1 \leq u_n \leq f[(n-1) + \ln 2] - 1. \end{split}$$

- **c.** Pour $n \ge 2$, on a montré que $f(n+\ln 2)-1 \le u_n \le f[(n-1)+\ln 2]-1$, donc $f(n+1+\ln 2) \le u_{n+1} \le f(n+\ln 2)-1$, donc par transitivité $u_{n+1} \le u_n$. Donc la suite (u_n) est décroissante.
- **d.** La suite (u_n) est décroissante minorée par zéro : elle est donc convergente vers une limite supérieure ou égale à zéro.
- 4. **a.** $S_n = u_1 + u_2 + u_3 + \dots + u_n =$ $\int_{(1-1)+\ln 2}^{1+\ln 2} [f(x)-1] dx + \int_{(1)+\ln 2}^{2+\ln 2} [f(x)-1] dx + \dots + \int_{(n-1)+\ln 2}^{n+\ln 2} [f(x)-1] dx =$ $\int_{\ln 2}^{n+\ln 2} [f(x)-1] dx \text{ en application de la relation de Chasles}$
 - **b.** S_n est donc égale à l'aire de la surface limitée par \mathscr{C} , l'axe des abscisses et les droites verticales $x = \ln 2$ et $x = n + \ln 2$.

et les droites verticales
$$x = \ln 2$$
 et $x = n + \ln 2$.
c. $S_n = \int_{\ln 2}^{n + \ln 2} [f(x) - 1] dx = \int_{\ln 2}^{n + \ln 2} [e^{-x} - 2e^{-2x}] dx = [-e^{-x} + e^{-2x}]_{\ln 2}^{n + \ln 2} = -e^{-n - \ln 2} + e^{-2(n + \ln 2)} + e^{-\ln 2} - e^{-2\ln 2} = -e^{-n} \times \frac{1}{2} + e^{-2n} \times \frac{1}{4} + \frac{1}{2} - \frac{1}{4} = -\frac{1}{2}e^{-n} + \frac{1}{4}e^{-2n} + \frac{1}{4}.$
Comme $\lim_{n \to +\infty} e^{-n} = 0$ et $\lim_{n \to +\infty} e^{-2n} = 0$,

$$\lim_{n \to +\infty} S_n = \frac{1}{4}.$$