Cours

Forme canonique d'un polynôme du second degré

Cours de maths première S

Voici un cours sur la forme canonique d'un polynôme du second degré. Je vous donne la formule à apprendre par coeur et sa démonstration, à savoir reproduire.

Et alors ? Je vais vous montrer comment trouver la forme canonique d'une expression. Suivez bien mon raisonnement, il est important que vous le compreniez.

On part du polynôme P:

P(x) = ax² + bx + c


On factorise ce polynôme par a.

Par a? Mais il n'est pas en facteur partout ! Comment je fais ?

Là où le a n'est pas en facteur apparant, vous diviserez par a tout simplement. Regardez :

polynôme du second degré


Vous voyez bien qu'en développant on retombe sur l'expression du départ.
Continuons. On ne va se préoccuper que de la partie second degré en factorisant à l'aide d'une identité remarquable a² + 2ab + b² = (a + b)² comme ceci :

forme canonique d'un polynôme


On doit enlever forme canonique car :

démonstration forme canonique


Et nous nous ne voulons que polynôme. Donc la meilleure des choses à faire, c'est d'enlever second degré en 1ère ES.
Ce qui nous donne :



Mettons sous le même dénominateur les deux dernière fractions.

méthode du discriminant


On note Δ la quantité ,

Δ = b² - 4ac


Et on a fini :

forme canonique d'un polynôme du second degré


Résumons tout ça.

Propriété

Forme canonique d'un polynôme

Soit P(x) = ax² + bx + c un polynôme du second degré avec a ≠ 0.
On appelle forme canonique de P :

formule de la forme canonique


Avec Δ le discriminant de P :

Δ = b² - 4ac


Exemple

Soit le polynôme P(x) = x² + 2x - 1. Donner sa forme canonique.
On a donc ici : a = 1, b = 2 et c = -1.
On applique tout bêtement la formule :
On a :

Δ = 2² - 4 × 1 × (-1) = 8


Calculons donc la forme canonique.



On a terminé.

Bien évidemment, on pourrez vous demandez de refaire le raisonnement précédent.


Quelques exercices sur Forme canonique d'un polynôme du second degré :