Probabilités Télécharger en PDF Télécharger la fiche

Loi binomiale
Cours première ES

Pour finir ce cours sur les probabilités en première ES, c'est un cours sur la loi binomiale, énoncée et appliquée à travers un exemple de lancé de dé.

Contenu réservé aux abonnés.
Accès illimité à tous les cours et exercices
Accès illimité aux quizz interactifs et suivi scolaire
Accès illimité aux vidéos
Téléchargement et impression des fiches de révisions
Mathsbook Family : Accès illimité pour 5 membres de votre famille

Dès 1€ seulement, le premier mois

Démarrer mon essai

Nous allons, dans ce cours de maths, cette traiter la loi binomiale à travers l'exemple du lancé de dés.

Lorsque le 6 apparaît, le joueur a gagné. On appelle S cet événement.
Sinon, le joueur a perdu.
Le dé est lancé trois fois par joueur.
Quelle est la probabilité de gagner une fois, deux fois, trois fois et aucune fois ?

Pour répondre à cette question, nous utiliserons un arbre construit de la façon suivante : 3 lancés donc trois niveaux. Soit, au premier lancé il gagne, soit il perd. Soit au second il gagne, soit il perd. Et ainsi de suite.

Voici l'arbre pondéré.

arbre loi binomiale


Appelons xn l'événement "le joueur a obtenu i six, soit i succès.

X0 est l'événement "obtenir 0 succès". Cet événement est obtenu par un seul chemin, celui tout en bas :

calcul de probabilité


X1 est l'événement "obtenir 1 succès". Cet événement est obtenu en utilisant trois chemins :

probabilité


X2 est l'événement "obtenir 2 succès". Cet événement est obtenu en utilisant trois chemins :

calcul loi binomiale


X3 est l'événement "obtenir 3 succès". Cet événement est obtenu par un seul chemin, celui tout en haut :

calcul de probabilité et loi binomiale


La loi de probabilité décrivant cette expérience sert appelé loi binomiale.

Théorème

Loi binomiale

Soit un réel p compris entre 0 et 1 et n un entier naturel non nul.

Le nombre de succès dans la répétition de n épreuves de Bernoulli identiques et indépendantes suit la loi binomiale de paramètres n et p.

Une variable aléatoire suit ainsi la loi binomiale de paramètres n et p, notée B(n; p), si :
  • X(Ω) = [|0; n|],
  • k ∈ [|0; n|] : coefficients binomiauxpk(1 - p)n - k

  • Le nombre de possibilités de placer les k succès parmi les n répétitions est égal au coefficient : coefficients binomiaux

Pareil que pour la loi de Bernouilli, pour la loi binomiale, il y a des simplicité dans les calculs de l'espérance et de la variance.

Théorème

Théorème variance et espérance

Si X suit la loi de binomiale de paramètres n et p, on a alors :
  • E(X) = np,
  • V(X) = np(1 - p),

Voilà, nous avons fini ce chapitre sur le conditionnement. Vous pouvez passer aux exercices, QCM interactifs ou aux annales pour vous préparer au Baccalauréat.

Loi binomiale - Cours de maths première ES - Loi binomiale
: 4/5 (7 avis)
Donnez votre avis sur ce cours.

Identifie-toi pour voir plus de contenu.

Inscription
Connexion