Statistiques Télécharger en PDF Télécharger la fiche

Notions de base en statistique
Cours seconde

On commence par énumérer toutes les notions de bases en statistique que vous devez connaître, à savoir : l'effectif, la médiane, la fréquence et la moyenne d'une série statistique.

Contenu réservé aux abonnés.
Accès illimité à tous les cours et exercices
Accès illimité aux quizz interactifs et suivi scolaire
Accès illimité aux vidéos
Téléchargement et impression des fiches de révisions
Mathsbook Family : Accès illimité pour 5 membres de votre famille

Dès 1€ seulement, le premier mois

Démarrer mon essai

Dans cette première partie, nous allons (re)voir les notions de base de statistiques. Parmi elles : les effectifs, les fréquences, la médiane, la moyenne... Je suis sûr que vous avez déjà rencontrer ces notions au collège.

1 - Vocabulaire de base

Dans cette section, je vais vous définir les notions de bases, mais alors vraiment de base, sur les séries statistiques. On commence légèrement donc.

Premièrement, qu'est-ce que la statistique ? La statistique est tout simplement l'étude d'une population composée d'individus.

Ensuite, le caractère : c'est l'aspect que l'on observe sur les individus. Il peut être qualitatif, quantitatif discret ou quantitatif continu.

Qu'est-ce que cela veut dire "discret" et "continu" ? Et le reste d'ailleurs ?

Je m'explique de suite.

Caractère qualitatif : Si l'on fait, par exemple, une étude statistique sur le mois de naissance d'une population, on parle de caractère qualitatif car on ne parle pas de valeurs numériques. En effet, les mois de l'année ne sont pas des valeurs numériques.

Caractère quantitatif : Si on fait au contraire une étude statistique sur l'âge d'une population, alors là (se sont des valeurs numériques) on parle de caractère quantitatif. On distingue deux caractères quantitatifs distincts :

  • Discrète : 16 ans, 17 ans, 18 ans, etc.
  • Continue : se sont tout simplement les intervalles : [15; 20[, [20; 25[, [25; 30[, etc.

2 - Effectifs

Plusieurs définitions sur les effectifs.

Définition

Effectif

L'effectif de la valeur xi est le nombre d'individus de la population ayant cette valeur ou appartenant à cette classe : on le note ni.

L'effectif total N est la somme de tous les effectifs : N = n1 + n2 + ... + nk.

En rangeant les valeurs du caractère dans l'ordre croissant, on peut calculer l'effectif cumulé croissant en faisant la somme des effectifs de cette valeur et de tous ceux qui la précèdent.

Je donne un bon exemple pour vous expliquer ces trois définitions.

Exemple

Dans une classe de 20 élèves de seconde, voici les notes obtenues au dernier contrôle de maths :
exemple calcul effectifs


On va calculer les effectifs et les effectifs cumulés.

Premièrement, les effectifs : combien d'élèves ont eut 10 ? 2 élève, ok. Combien d'élèves ont eut 12 ? 3 élèves, ok. On continu ainsi et on forme le tableau suivant :
exemple calcul effectifs cumulés



Facile non ? Les effectifs cumulés maintenant. On fait la somme des effectifs de la note + la somme de des effectifs de toutes les notes qui la précédent. Ce qui nous donne :
exemple calcul effectif total


Et voilà.

Remarque

Pour vérifier qu'on ne sait pas trompé dans le calcul des effectifs cumulés, on vérifie bien que le dernier effectif cumulé correspond bien au nombre d'individus.
Ici, on retrouve bien 20, le nombre d'élève de cette classe de seconde.

3 - Fréquences

Passons aux fréquences maintenant.

Définition

Fréquence

La fréquence d'une valeur est le quotient de l'effectif de la valeur par l'effectif total.

En rangeant les valeurs du caractère dans l'ordre croissant, on peut calculer les fréquences cumulées croissantes en faisant la somme des fréquences de cette valeur et de tous ceux qui la précèdent.

Pour les fréquences cumulées croissantes, c'est un peu le même principe que pour les effectifs cumulée croissants.

Petite remarque

Les fréquences sont comprises entre 0 et 1.

Exemple

On reprends l'exemple précédent et on applique tout simplement la formule des fréquences pour les calculer.


exemple calcul fréquence


Et la suite :

exemple calcul fréquence cumulée

Remarque

Pareil, pour vérifier qu'on ne sait pas trompé dans le calcul des fréquences cumulés, on vérifie bien que la dernière fréquence cumulés vaut bien 1.
Ici, on retrouve bien 1, c'est bon.

4 - Médiane

On continue avec la définition de la médiane.

Définition

Médiane

La médiane est la valeur du caractère qui permet de partager la population N en deux groupes de même effectifs. On distingue deux cas : celui d'un caractère quantitatif discret et celui d'un caractère quantitatif continu.
Cas d'un caractère quantitatif discret :
  • Si N est impair : la médiane est la valeur du caractère observé au rang (N+1)/2.
  • Si N est pair : la médiane n'est pas définie, mais on convient de prendre pour médiane la moyenne des caractères observés au rang N/2 et (N/2) + 1.
Cas d'un caractère quantitatif continu : on construit la courbe des fréquences cumulées et la médiane est l'antécédent de 0,5.

Je vais vous donner un exemple simple du cas d'un caractère quantitatif discret.

Exemple

Les notes d'un élève de première sont les suivantes : 3, 5, 12, 14 et 18.
On dénombre cinq notes distinctes, donc un nombre impair de notes.
La médiane est donc la valeur du rang 3. En effet, on applique bêtement la formule précédente :
calcul de la médiane

D'où : la médiane est 12.

Maintenant, si l'on rajoute la note de 15 à l'élève. On aurait donc les notes suivantes : 3, 5, 12, 14, 15 et 18.
La on est dans le cas d'un nombre de notes pair. On va prendre la moyenne des rang N/2, soit 12, et (N/2) + 1, soit 14. Ce qui nous donne :

calcul de la médiane

La médiane est donc 13.

5 - Moyenne arithmétique pondérée

Une petite définition pour commencer.

Définition

Moyenne arithmétique pondérée

La moyenne arithmétique pondérée, que l'on note x barre, est donnée par la formule suivante :

formule de la moyenne arithmétique pondérée

Avec N = n1 + n2 + ... + nk et ni l'effectif de la valeur xi.

6 - Exemples

Bon, maintenant on va s'exercer un peu sur des exemples pour bien clarifier toutes les notions que l'on vient d'aborder.

Voici donc deux exemples complets à savoir faire et refaire.

Exemple

Etude d'une série statistique à caractère discret :

Dans une classe de 25 élèves de première, les résultats à un contrôle de mathématiques sont les suivants :
7; 9; 15; 11; 10; 10; 16; 7; 8; 14; 15; 9; 10; 10; 14; 15; 18; 12; 8; 14; 8; 8; 10; 11; 15.


Alors, déjà, quelle est la population, le caractère et les valeurs prises par ce dernier ?

...

Eh bien, allez-y ? Vous connaissez la réponse, j'en suis sûr !

Bon, je vous aide.
La population est l'ensemble des contrôles de mathématiques.
Le caractère étudié est la note obtenue par chaque élève de première de cette classe.
Les valeurs prises par le caractères sont les entiers compris entre 7 et 18 (les valeurs des notes quoi).

On va résumer les notes dans l'ordre croissante, l'effectif, l'effectif cumulé et la fréquence dans un tableau :
Tableau statistiques


Normalement, si vous avez bien compris et bien appris toutes les formules précédentes, vous saurez sans aucun problème retrouver toutes les valeurs de ce tableau.

Je l'explique un peu quand même.
La première ligne correspond aux notes des élèves au contrôle de maths. Ca, pas de problème je pense.
La deuxième ligne correspond au nombre de chacune des notes. Par exemple, 2 personnes ont obtenu 7 au contrôle, 4 ont eut 8, etc.
La troisième ligne, c'est la même chose, sauf qu'on compte cette fois-ci combien de personne au eut la note ou moins, soit : 8 personnes ont eut 9 ou moins, etc. On retombe bien sur le nombre total d'élèves, à savoir 25, à la fin.
La dernière ligne, c'est la fréquence. Vous avez la formule un peu plus haut. Pas besoin de réexpliquer.

Calculons maintenant l'étendue, le mode et la médiane.

Calcul de l'étendue : Je vous rappelle que l'étendue est la différence entre la valeur maximale et la valeur minimale, soit ici 11 : 18 - 7 = 11.

Calcul du mode : C'est la valeur qui correspond au plus grand effectif, c'est-à-dire ici la note qui a été obtenue par le plus d'élève. Il s'agit de... 10 ! Oui, 10, obtenue par cinq élèves.

Calcul de la médiane : On a un nombre impair de notes, donc on applique la formule suivante :
calcul de la médiane d'une série statistique

La médiane est donc la note obtenue par le 13ème élève. C'est là que va nous service la ligne des effectifs cumulés.
On lit aisément que le 13ème élève a eut 10 à son contrôle de maths, la médiane est donc ici de 10.


Exemple

Etude d'une série statistique à caractère continu :

Dans un lycée, nous avons relevé la taille des élèves et les avons regroupées dans le tableau suivant :
exemple d'étude d'une série statistique à caractère continu


On va calculer, ensemble (oui, je ne vous lâche pas, ne vous inquietez pas) :
  • L'étendue,
  • La classe modale,
  • Le mode,
  • La médiane,
  • La moyenne.


Alors, pas de temps à perdre, on y va de suite. Je ne rappelle pas à chaque fois les formules pour gagner du temps.

Calcul de l'étendue : 200 - 150 = 50.
Calcul de la classe modale : [165; 170[.
Calcul du mode : C'est le centre de la classe modale, soit : 167,5.
Calcul de la médiane : Rappelons simplement que dans une série statistique à caractère continu, la médiane est la valeur qui correspond à une fréquence de 0,5. Vous avez compris ce que cela veut dire ? On est obligé de calculer les fréquences oui. Allons-y. Je les ai regroupé dans le tableau suivant :


tableau de fréquence cumulée


Puis on construit la courbe des fréquences cumulées.
courbe statistique


Après lecture graphique, on détermine facilement la médiane qui vaut 169cm.

Calcul de la moyenne : on termine par le plus simple :
Calcul de la moyenne

La moyenne est donc de 170,66cm.

Notions de base en statistique - Cours de maths seconde - Notions de base en statistique
: 4/5 (270 avis)
Donnez votre avis sur ce cours.
Emerykombi23

Emerykombi23 il y a 394 jours.

Pas totalement

Emerykombi23

Emerykombi23 il y a 394 jours.

Pas totalement

Emerykombi23

Emerykombi23 il y a 394 jours.

Pas totalement

Sidihab

Sidihab il y a 808 jours.

Bonjour,
Je souhaite vivement suivre ce cours car la méthodologie est très adaptée. Cependant je ne dispose pas de carte de crédit( résident hors UE). Comment est-possible pour moi? Cordialement

Zahzahz

Zahzahz il y a 1365 jours.

Super

Identifie-toi pour voir plus de contenu.

Inscription
Connexion