Statistiques Télécharger en PDF Télécharger la fiche

Rappels de statistiques
Cours première ES

Démarrons avec tous les rappels sur les statistiques que nous avons vu ces derniers années, à savoir : le vocabulaire, la fréquence, la moyenne, la médiane et beaucoup d'exemples.

Contenu réservé aux abonnés.
Accès illimité à tous les cours et exercices
Accès illimité aux quizz interactifs et suivi scolaire
Accès illimité aux vidéos
Téléchargement et impression des fiches de révisions
Mathsbook Family : Accès illimité pour 5 membres de votre famille

Dès 1€ seulement, le premier mois

Démarrer mon essai

Dans cette première partie, nous allons revoir les notions de base de statistiques, les langages et les premiers calculs. Rien de bien méchant.

1 - Rappels de base et langage statistique

On commence par un tableau qui rappelle de cours de statistiques de seconde. Oui oui, se sont des rappels.

En langage statistique En langage mathémariques En langage courant
Population Ensemble P Ensemble des objets, des individus, mesures étudiées
Individu Element de P Objet, individu, mesure
Caractère
Caractère quantitatif
Caractère qualitatif
Application f
f : P → R
f : P → A (A non réel)
Aspect des objets étudiés
Les données sont numériques
Les données ne sont pas numériques
Modalité
Caractère quantitatif discret
Caractère quantitatif continu
Image par f des éléments de P
f(P) sont des valeurs isolées

f(P) est un intervalle
Valeurs que peut prendre le caractère
Valeurs isolées que l'on peut dénombrer

Toute valeur d'un intervalle
Classe Partie de l'ensemble des modalités Regrouper des modalités
Effectif
Effectif total
Effectif cumulé croissant
ni
N = n1 + n2 + ... + nk
n1 + n2 + ... + np
Nombre d'individu ayant la même modalité
Nombre total d'objets
Somme des effectifs
Mode
Caractère discret
Mode
Caractère continu
Classe modale
Mode


Valeur du plus grand effectif

Valeur du plus grand effectif
Centre de la classe modale
Fréquence F = ni/N Rapport : effectif d'une valeur par effectif total
Etendue Différence entre les valeurs extrêmes

2 - Médiane

Pas mal de rappels déjà. On continue avec la définition de la médiane.

Définition

Médiane

La médiane est la valeur du caractère qui permet de partager la population N en deux groupes de même effectifs. On distingue deux cas : celui d'un caractère quantitatif discret et celui d'un caractère quantitatif continu.
Cas d'un caractère quantitatif discret :
  • Si N est impair : la médiane est la valeur du caractère observé au rang (N+1)/2.
  • Si N est pair : la médiane n'est pas définie, mais on convient de prendre pour médiane la moyenne des caractères observés au rang N/2 et (N/2) + 1.
Cas d'un caractère quantitatif continu : on construit la courbe des fréquences cumulées et la médiane est l'antécédent de 0,5.

Je vais vous donner un exemple simple du cas d'un caractère quantitatif discret.

Exemple

Les notes d'un élève de première sont les suivantes : 3, 5, 12, 14 et 18.
On dénombre cinq notes distinctes, donc un nombre impair de notes.
La médiane est donc la valeur du rang 3. En effet, on applique bêtement la formule précédente :
calcul de la médiane

D'où : la médiane est 12.

Maintenant, si l'on rajoute la note de 15 à l'élève. On aurait donc les notes suivantes : 3, 5, 12, 14, 15 et 18.
La on est dans le cas d'un nombre de notes pair. On va prendre la moyenne des rang N/2, soit 12, et (N/2) + 1, soit 14. Ce qui nous donne :

calcul de la médiane

La médiane est donc 13.

3 - Moyenne arithmétique pondérée

Une petite définition pour commencer.

Définition

Moyenne arithmétique pondérée

La moyenne arithmétique pondérée, que l'on note x barre, est donnée par la formule suivante :

formule de la moyenne arithmétique pondérée

Avec N = n1 + n2 + ... + nk et ni l'effectif de la valeur xi.

4 - Exemples

Bon, maintenant on va s'exercer un peu sur des exemples pour bien clarifier toutes les notions que l'on vient d'aborder.

Voici donc deux exemples complets à savoir faire et refaire.

Exemple

Etude d'une série statistique à caractère discret :

Dans une classe de 25 élèves de première, les résultats à un contrôle de mathématiques sont les suivants :
7; 9; 15; 11; 10; 10; 16; 7; 8; 14; 15; 9; 10; 10; 14; 15; 18; 12; 8; 14; 8; 8; 10; 11; 15.


Alors, déjà, quelle est la population, le caractère et les valeurs prises par ce dernier ?

...

Eh bien, allez-y ? Vous connaissez la réponse, j'en suis sûr !

Bon, je vous aide.
La population est l'ensemble des contrôles de mathématiques.
Le caractère étudié est la note obtenue par chaque élève de première de cette classe.
Les valeurs prises par le caractères sont les entiers compris entre 7 et 18 (les valeurs des notes quoi).

On va résumer les notes dans l'ordre croissante, l'effectif, l'effectif cumulé et la fréquence dans un tableau :
Tableau statistiques


Normalement, si vous avez bien compris et bien appris toutes les formules précédentes, vous saurez sans aucun problème retrouver toutes les valeurs de ce tableau.

Je l'explique un peu quand même.
La première ligne correspond aux notes des élèves au contrôle de maths. Ca, pas de problème je pense.
La deuxième ligne correspond au nombre de chacune des notes. Par exemple, 2 personnes ont obtenu 7 au contrôle, 4 ont eut 8, etc.
La troisième ligne, c'est la même chose, sauf qu'on compte cette fois-ci combien de personne au eut la note ou moins, soit : 8 personnes ont eut 9 ou moins, etc. On retombe bien sur le nombre total d'élèves, à savoir 25, à la fin.
La dernière ligne, c'est la fréquence. Vous avez la formule un peu plus haut. Pas besoin de réexpliquer.

Calculons maintenant l'étendue, le mode et la médiane.

Calcul de l'étendue : Je vous rappelle que l'étendue est la différence entre la valeur maximale et la valeur minimale, soit ici 11 : 18 - 7 = 11.

Calcul du mode : C'est la valeur qui correspond au plus grand effectif, c'est-à-dire ici la note qui a été obtenue par le plus d'élève. Il s'agit de... 10 ! Oui, 10, obtenue par cinq élèves.

Calcul de la médiane : On a un nombre impair de notes, donc on applique la formule suivante :
calcul de la médiane d'une série statistique

La médiane est donc la note obtenue par le 13ème élève. C'est là que va nous service la ligne des effectifs cumulés.
On lit aisément que le 13ème élève a eut 10 à son contrôle de maths, la médiane est donc ici de 10.

Exemple

Etude d'une série statistique à caractère continu :

Dans un lycée, nous avons relevé la taille des élèves et les avons regroupées dans le tableau suivant :
exemple d'étude d'une série statistique à caractère continu



On va calculer, ensemble (oui, je ne vous lâche pas, ne vous inquietez pas) :
  • L'étendue,
  • La classe modale,
  • Le mode,
  • La médiane,
  • La moyenne.


Alors, pas de temps à perdre, on y va de suite. Je ne rappelle pas à chaque fois les formules pour gagner du temps.

Calcul de l'étendue : 200 - 150 = 50.
Calcul de la classe modale : [165; 170[.
Calcul du mode : C'est le centre de la classe modale, soit : 167,5.
Calcul de la médiane : Rappelons simplement que dans une série statistique à caractère continu, la médiane est la valeur qui correspond à une fréquence de 0,5. Vous avez compris ce que cela veut dire ? On est obligé de calculer les fréquences oui. Allons-y. Je les ai regroupé dans le tableau suivant :


tableau de fréquence cumulée



Puis on construit la courbe des fréquences cumulées.
courbe statistique



Après lecture graphique, on détermine facilement la médiane qui vaut 169cm.

Calcul de la moyenne : on termine par le plus simple :
Calcul de la moyenne

La moyenne est donc de 170,66cm.

Rappels de statistiques - Cours de maths première ES - Rappels de statistiques
: 4/5 (9 avis)
Donnez votre avis sur ce cours.
Crawlergo

Crawlergo il y a 295 jours.

Crawlergo

Crawlergo

Crawlergo il y a 295 jours.

Crawlergo

Identifie-toi pour voir plus de contenu.

Inscription
Connexion