Limites de suites numériques Télécharger en PDF Télécharger la fiche

Limites de suites et de fonctions
Cours première S

La notion de limite pour les suites numériques est très liée à celle des fonctions. Voici un cours qui vous donnera la définitions, suivie d'exemple, des limites de suites et de fonctions.

Contenu réservé aux abonnés.
Accès illimité à tous les cours et exercices
Accès illimité aux quizz interactifs et suivi scolaire
Accès illimité aux vidéos
Téléchargement et impression des fiches de révisions
Mathsbook Family : Accès illimité pour 5 membres de votre famille

Dès 1€ seulement, le premier mois

Démarrer mon essai

Nous allons étudier le cas où la suite un est définie explicitement à l'aide d'une fonction f.

Propriétés

Limites de suites et de fonctions

Soient f une fonction définie sur ]a ; +∞[ et un = f(n) une suite définie à partir de n > a.
Si f admet en +∞ une limite finie, ou infinie, alors la suite un admet la même limite.

C'est logique, vu que la suite est définie par une fonction.
On a juste remplacé le x de la fonction par le n de la suite.

Exemple

La suite exemple opération sur les suites a pour limite 3.
En effet : soit f la fonction .
On a un = f(n).
Or,

opérations sur les suites numériques


Oui, car et . Par addition, on a le résultat que l'on voulait.
Donc :

opérations sur les limites de suites

Remarque

On a car plus le x est grand (plus il tend vers l'infini), plus la fraction sera petite (plus elle va tendre vers 0).

Limites de suites et de fonctions - Cours de maths première S - Limites de suites et de fonctions
: 4/5 (12 avis)
Donnez votre avis sur ce cours.

Identifie-toi pour voir plus de contenu.

Inscription
Connexion