Continuité et théorème des valeurs intermédiaires Télécharger en PDF Télécharger la fiche

Théorème des valeurs intermédiaires
Cours terminale S

Un des théorèmes les plus importants de cette année de terminale est celui que nous allons apprendre dans ce cours : le théorème des valeurs intermédiaires. Vous devez le connaître mais surtout le comprendre et savoir l'appliquer dans les exercices du Bac.

Contenu réservé aux abonnés.
Accès illimité à tous les cours et exercices
Accès illimité aux quizz interactifs et suivi scolaire
Accès illimité aux vidéos
Téléchargement et impression des fiches de révisions
Mathsbook Family : Accès illimité pour 5 membres de votre famille

Dès 1€ seulement, le premier mois

Démarrer mon essai

Voici un des grands théorèmes de Terminale. C'est absolument sûr que vous aurez une question en rapport à l'épreuve de Juin prochain.
Je vous donne le théorème, suivi de son corollaire.

Théorème

Théorème des valeurs intermédiaires

Soit f une fonction définie et continue sur un intervalle I. Soient deux réels a et b dans I.
Pour tout réel k compris entre f(a) et f(b), il existe au moins un réel c compris entre a et b tel que f(c) = k.

théorème des valeurs intermédiaires

Corollaire

Corollaire du théorème des valeurs intermédiaires

Soit f une fonction continue et strictement monotone sur [a, b].
Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution dans [a, b].

Attention, il faut absolument une fonction continue et strictement monotone sur un intervalle [a, b]. Qu'es-ce que cela veut dire ? Cela veut dire que la fonction est soit strictement croissante, soit strictement décroissante sur [a, b] et que sur cet intervalle, on peut tracer la fonction f sans lever le crayon.
Dans ces conditions là, pour tous les réels k compris dans l'intervalle [f(a), f(b)], image de l'intervalle [a, b], alors ce k admet un unique antécédent. La fonction passe obligatoirement une fois et une seule fois par ce k.

Regarde bien la figure précédente.
On a pris un intervalle [a, b] et l'intervalle [f(a), f(b)] qui n'est rien d'autre que l'image de l'intervalle [a, b].
La fonction représentée est continue et strictement monotone, en l'occurrence croissante ici.
On voit très bien que n'importe quel k compris entre f(a) et f(b) admet un antécédent par la fonction f. Vous n'avez qu'à essayer. Prenez un autre k dans l'intervalle [f(a), f(b)]. Il aura toujours un et un seul antécédent par f.

Je vais vous donner une exemple important. C'est exactement ce qu'on vous demandera de faire le jour J.

Exemple

Soit f la fonction continue définie sur [-3; 7].
On donne le tableau de variation de la fonction f ci-dessous.

exemple théorème des valeurs intermédiaires


Combien de solution admet l'équation f(x) = 0 ?

  • Premièrement, f est continue sur [-3; 7], comme ça on l'a dit.

  • On cherche f(x)=0, donc on va chercher dans la ligne du bas du tableau de variation.

  • Or, 0 ∈ [-3; 7] (attention à l'ordre des nombres dans un intervalle, le plus petit d'abord). Cela correspond à l'intervalle de x ∈ [-3; 1].
  • La fonction f est strictement décroissante sur [-3, 1].
  • On a toutes les conditions. Appliquons le théorème des valeurs intermédiaires : L'équation f(x) = 0 admet une unique solution sur l'intervalle [-3; 1].
    Mais la question est posée sur l'intervalle [-3; 7]. Il faut donc vérifier si l'équation admet une autre solution dans l'intervalle restant, soit [1; 7].
    Regardons. Non, f(x) ne passe plus par 0. En effet, elle part de -3 jusque -1, puis de -1 à -2. Donc sans passer par 0.

  • Conclusion : L'équation f(x) = 0 admet une unique solution sur [-3; 7].

Théorème des valeurs intermédiaires - Cours de maths terminale S - Théorème des valeurs intermédiaires
: 4/5 (18 avis)
Donnez votre avis sur ce cours.
Jdrouaud

Jdrouaud il y a 954 jours.

Ce développement est pour moi la partie introductive de ce chapitre important du théorème des valeurs intermédiaires.
Les élèves me paraissent très attachés à la découverte de l'utilité des outils mathématiques en général, probablement pour se justifier à eux-mêmes leur effort de compréhension.

En l'occurrence il s'agit de la résolution des équations de type f(x)=k, en s'appuyant sur les propriétés des valeurs intermédiaires. Un programme Python mettant en oeuvre l'algorithme de dichotomie pourra alors donner la valeur de chaque solution (si plusieurs) avec la précision requise.
Ce développement peut ignorer la démonstration par dichotomie qui n'est pas, je pense, au programme.

Elhouari.l

Elhouari.l il y a 2667 jours.

Ce théorème permet d'abord de savoir, d'apprendre et de comprendre les variations graphiques de la foncion

Louisedesso

Louisedesso il y a 2673 jours.

J'ai tout compris

Identifie-toi pour voir plus de contenu.

Inscription
Connexion