Exercices

Etude de deux fonctions avec des exponentielles

Exercice de maths terminale ES

Un exercice complet sur la fonction exponentielle reprenant tous les points vus en cours : limites exponentielle, dérivées, variations, etc, à travers l'étude de deux fonctions exponentielles.

Soient les fonctions f et g définies par :



On désigne par Cf et Cg les courbes représentatives des fonctions f et f dans un repère orthonormé.

  • Déterminer la limite de la fonction f en -∞.
  • Déterminer la limite de la fonction f en +∞.
  • On pose h(x) = f(x) - g(x). Déterminer la limite de la fonction f en +∞. Donner une interprétation graphique de ce résultat.
  • Etudier la position relative des courbes Cf et Cg.
  • Montrer que la dérivée f ' de f est : f '(x) = (x - 1)(1 - ex).
  • Etudier le signe de cette dérivée pour en déduire les variations de la fonction f.
  • Dresser le tableau de variation des fonction f et g.
  • Tracer Cf et Cg.

Voir la correction

Révisez le cours pour mieux comprendre cet exercice Etude de deux fonctions avec des exponentielles :